No category

منبع پایان نامه درباره پیوند، هیدروژنی، روشهای

پیوند هیدروژنی موسوم است. هر اتم هیدروژن قادر است تنها یک پیوند هیدروژنی تشکیل دهد[6].
1-2-2- نقطه جوش و پیوند هیدروژنی
ترکیباتی که پیوند هیدروژنی دارند، خواص غیر عادی از خود نشان میدهند. تغییرات نقاط جوش در مجموعه ترکیبات SnH4 , GeH4 , SiH4 , CH4 مطابق روال پیشبینی شده برای ترکیبات است نیروهای بین مولکولی آنها منحصر به نیروهای لاندن است. نقطه جوش در این مجموعه با افزایش اندازه مولکولی، زیاد میشود. ترکیبات هیدروژنی عناصر گروه چهار اصلی، مولکولهای غیرقطبی هستند. اتم مرکزی هر مولکول فاقد زوج الکترون غیر مشترک است. در گروههای پنج، شش و هفت اصلی نیروهای دو قطبی – دو قطبی به نیروهای لاندن در چسباندن مولکولها به یکدیگر کمک می کند. ولی نقطه جوش نخستین عنصر هر مجموعه (NH3 , H2O , HF) به طور غیر عادی بالاتر از نقاط جوش سایر اعضای آن مجموعه است. پیوند هیدروژنی در هر یک از این سه ترکیب، جدا شدن مولکولها را از مایع مشکلتر میکند[6].
1-2-3- سایر خواص غیر عادی مربوط به پیوند هیدروژن
ترکیباتی که مولکولهای آنها از طریق پیوند هیدروژنی به همدیگر پیوستهاند، علاوه بر دارا بودن نقاط جوش بالا، بطور غیر عادی در دمای بالا ذوب میشوند و آنتالپی تبخیر، آنتالپی ذوب و گرانروی آنها زیاد است[7].
1-2-4- شرایط تشکیل پیوند هیدروژنی قوی
مولکولی که پروتون را برای تشکیل پیوند هیدروژنی در اختیار میگذارد (مولکول پروتون دهنده) باید چنان قطبیتی داشته باشد که جزئی بار مثبت اتم هیدروژن نسبتا زیاد باشد. مولکول پروتون گیرنده که زوج الکترون لازم برای تشکیل پیوند هیدروژنی را در اختیار میگذارد، باید نسبتا کوچک باشد. پیوند هیدروژنی واقعا موثر یا قوی فقط در اتمهای فلوئور، اکسیژن و نیتروژن تشکیل میشوند. اتم کلر پیوند هیدروژنی ضعیف تشکیل میدهند و این خصلت، با توجه به تغییر جزئی نقطه جوش HCl پیدا است. الکترونگاتیوی کلر تقریبا با نیتروژن برابر است. ولی چون اتم کلر بزرگتر از اتم نیتروژن است، پراکندگی ابر الکترونی در اتم بیش از اتم کلر نیتروژن میباشد[7].
1-2-5- نحوه تشکیل پیوند هیدروژنی
پیوند هیدروژن بر اثر جاذبه اتم هیدروژن جزئی مثبت موجود در یک مولکول و اتم بسیار الکترونگاتیو (F,O,N) موجود در مولکول دیگر تولید میگردد. قویترین پیوندهای هیدروژنی در سیستم هایی تشکیل میشوند که در آنها هیدروژن به الکترونگاتیوترین عناصر پیوند شده باشد. جا به جا شدن یک جفت الکترون به سمت عنصر بسیار الکترونگاتیو نیتروژن، اکسیژن یا فلوئوری موجب میشود که این اتمها دارای بار جزئی منفی شوند. در این صورت پیوند هیدروژنی پلی است میان دو اتم شدیدا الکترونگاتیو با یک اتم هیدروژن که از طرفی به طور کوالانسی با یکی از اتمهای الکترونگاتیو و از طرف دیگر به طور الکترواستاتیکی (جاذبه مثبت به منفی) با اتم الکترونگاتیو دیگر پیوند یافته است. استحکام پیوند هیدروژنی یک دهم تا یک پنجاهم قدرت یک پیوند کوالانسی متغیر است [6].
1-2-6- شرایط تشکیل پیوند هیدروژنی
بالا بودن الکترونگاتیوی اتمهای متصل به هیدروژن بر همین اساس است که فلوئور (الکترونگاتیوترین عنصر)، قویترین پیوند هیدروژنی و اکسیژن (الکترونگاتیوتر از نیتروژن)، پیوند هیدروژنی قویتری در مقایسه با نیتروژن تشکیل میدهد. همچنین بار مثبت زیاد بر روی اتم هیدروژن، زوج الکترون مولکول دیگر را به شدت جذب میکند و کوچک بودن اندازه اتم هیدروژن سبب میشود که مولکول دوم بتواند به آن نزدیک شود.
1-3- توتومری و تعریف آن
توتومری هیدروژن یکی از مهمترین فرآیندها در واکنشهای شیمیایی و محیط زنده است[10-8]. توتومری نوعی نو آرایی است که طی آن یک اتم هیدروژن که در موقعیتی خاص نسبت به یک پیوند دوگانه کربن – هترواتم قرار دارد با مهاجرت به هترواتم تشکیل یک پیوند دوگانه کربن -کربن میدهد[13-11] که عکس این فرایند نیز امکان پذیر است.
1-4- شیمی محاسباتی
زمانی روشهای شیمی محاسباتی تنها توسط متخصصان مورد استفاده قرار میگرفت که آنها از ابزارهایی استفاده میکردند که درک و کاربرد آن ابزارها، اغلب دشوار بود. نخستین بار محاسبات نظری در شیمی توسط هایتلر5 و فریتز6 در سال 1927 در لندن صورت گرفت. امروزه با پیشرفت و گسترش نرم افزارها، برنامههایی به وجود آمدهاند که به راحتی توسط هر شیمیدانی مورد استفاده قرار میگیرد. سالهای اخیر گواهی هستند بر اینکه هر روز بر تعداد افرادی که از شیمی محاسباتی استفاده میکنند، افزوده میگردد. بسیاری از این تازه واردها، نظریه پردازان موقتی هستند که بر روی دیگر جنبههای شیمی کار میکنند. علت این افزایش به خاطر توسعهی نرم افزارهای کامپیوتری است که بیش از پیش مورد استفاده قرار میگیرند.
عبارت شیمی محاسباتی را میتوان این گونه تعریف کرد که علم ریاضی است که به توصیف و شرح علم شیمی میپردازد. در واقع وقتی از عبارت شیمی محاسباتی استفاده میشود که یک روش ریاضی به اندازه کافی توسعه یابد تا بتوان آن را به طور اتوماتیک بر روی یک کامپیوتر اجرا کرد. امروزه شیمیدانان توانستهاند به حقایق جدید شیمیایی دست پیدا کنند که قبلا از آنها بی خبر بودهاند و به کمک این شاخه از علم شیمی بسیاری از واقعیتهای شیمیایی را گاه با دقتی بیشتر و آسان تر نسبت به روش تجربی به دست آورند. به کمک برنامههای محاسباتی میتوان در مورد مولکولهای ناشناختهای که هنوز سنتز نشدهاند یا در طبیعت یافت نشدهاند، حدواسطهای فعال که مطالعه بر روی خواص و ویژگیهای آنها و هم چنین شناسایی آنها به علت کوتاه بوده طول عمرشان در شرایط معمولی دشوار است و هم چنین مکانیسم انواع واکنشها مطالعات دقیق انجام داد.
با استفاده از نرم افزارها و برنامههای محاسباتی موجود امکان به دست آوردن اطلاعاتی راجع به ساختار مولکول ( مانند طول پیوند، زوایای پیوندی و زاویهی کشش )، خواص ترمودینامیکی ( مانند آنتروپی، انرژی آزاد، گرمای تشکیل و آنتالپی )، خواص طیفی ( مانند طیف رزونانس مغناطیسی هسته و طیف ارتعاشی )، خواص نوری و بسیاری از اطلاعات با ارزش دیگر امکان پذیر میباشد.
دلایل عمدهای که باعث شده شیمیدانان در سالهای اخیر به طورگستردهای به سمت شیمی محاسباتی روی آورند به شرح زیر است:
بهبود در فهم آسانتر مسائل شیمی
آزمایش فرضیهها و نظریههای جدید در شیمی
کاهش تعداد آزمایشهای لازم و صرفهجویی در زمان و هزینههای تحقیقاتی
آزمایشهای کم خطر بدون نیاز به مواد و تولید پسماند
دستیابی به صحت بهتر
شیمی محاسباتی که با استفاده از اصول ریاضی و نظری به حل مسایل شیمیایی میپردازد دارای دو حوزهی وسیع است که به ساختار مولکولها و واکنشپذیری آنها بستگی دارد:
مکانیک مولکولی7
مکانیک کوانتومی8
مکانیک مولکولی قوانین کلاسیک فیزیک را برای اتمها بدون ملاحظهی صریح الکترونها به کار میبندد. مکانیک کوانتومی با تکیه بر معادلهی شرودینگر و با درنظر گرفتن رفتار صریح ساختار الکترونی به تشریح مولکول میپردازد. عموماً روشهای مکانیک کوانتومی به سه گروه زیر تقسیم میشوند:
نیمه تجربی9
آغازین10
نظریهی تابعیت چگالی الکترونی11
که هرکدام دارای چندین زیر شاخه است. در ادامه مختصری در مورد هریک از روشهای محاسباتی ذکر شده ارائه خواهیم کرد. تمامی محاسبات برای تمامی روشها ممکن نیست، استفاده از یک روش به این منظور نیز مناسب نمیباشد. برای هر کاری هر روش یک سری مزایا و یک سری معایب دارد. انتخاب روش به تعداد فاکتورها شامل طبیعت مولکول، نوع اطلاعات خواسته شده، قابلیت دسترسی منابع کامپیوتری و زمان بستگی دارد. سه نوع مهم از این فاکتورها بدین ترتیب است:
اندازهی مدل: اندازه مدل یک عامل محدود کننده برای یک روش ویژه است. عموما محدودیت عددی اتمها در مولکول به طور تقریبی با یک توان بین روشها از آغازین به مکانیک مولکولی افزایش مییابد. در نتیجه روش آغازین به 10 اتم، نیمه تجربی به 100 اتم و مکانیک مولکولی به 1000 اتم محدود میگردد.
قابلیت دسترسی پارامتر: تعدادی از روشها به پارامترهای اندازه گیری شدهی تجربی برای اجرای محاسبات نیاز دارند. اگر مدل شامل اتمهایی باشد که پارامترهایش با روش مخصوص قابل دسترس نباشد، آن روش ممکن است پیشگوییهای ضعیفی را ارائه دهد. به عنوان مثال مکانیک مولکولی به پارامترهای تعویض میدان نیرو تکیه دارد.
منبع کامپیوتری: اگر چه تئوری شیمیایی نقش مهمی را در کار شیمیدان محاسباتی ایفا میکند، پیشگویی فیزیکی قابل مشاهده با ظرفیت کامپیوتر قابل دسترس محدود میگردد. کامپیوترهای عظیم با داشتن صدها پردازشگر، خروجی با معنی از نظر ظرفیت و ارزش اجرایی دارد. توسعهی کاربرد نرم افزارهای مدلسازی مولکولی، مطالعهی سیستمهای پیچیده شیمیایی را امکان پذیر میسازد. یکی از عمومیترین برنامههای کامپیوتری برای محاسبات شیمی کوانتومی، نرم افزار گوسین7 است که به وسیلهی گروه جان پاپل8 در پیتزبرگ توسعه یافته است [14].
1-4-1- روشهای نیمه تجربی
روشهای نیمه تجربی برای ساده سازی محاسبات از پارامترهای حاصل از دادههای تجربی استفاده میکنند. این روشها شکل تقریبی معادلهی شرودینگر را به پارامترهای قابل دسترس برای نوع سامانه شیمیایی مورد بررسی تبدیل میکنند. به همین دلیل جزء روشهای کوانتومی محسوب میشوند. در این روشها فقط از الکترونهای لایهی ظرفیت استفاده میشود و الکترونهای لایههای داخلی به صورت یک پتانسیل مرکزی درنظر گرفته میشوند. زمان محاسبه در این روشها کوتاه است اما صحت نتایج بدست آمده از آنها محدود است. در این روشها فقط از اوربیتالهای نوع اسلیتر12 (STO) و مجموعه پایه کمینه13 برای توصیف اوربیتالهای اتمی استفاده میشود]15[. در روشهای نیمهتجربی از برخی انتگرالهای دو الکترونی دو مرکزی صرفه نظر میشود و به جای انتگرالهای سه و چهار مرکزی از مقادیر تجربی آنها استفاده میشود. یک نکتهی بسیار مهم دربارهی روشهای نیمه تجربی این است که این روشها فقط آرایش الکترونی حالت پایه را توصیف میکنند.
روشهای نیمه تجربی برای تولید نتایجی پارامتربندی شدهاند که اغلب شامل ساختار و انرژی (گرمای تشکیل) هستند. اخیراً این روشها به گونهای توسعه یافتهاند که توانایی محاسبه گشتاور دو قطبی و پتانسیل یونش را هم دارند. تعداد اندکی از این روشها توانایی محاسبه طیفهای الکترونی و جابجایی شیمیایی NMR را دارند. روشهای نیمه تجربی با محاسبات از روی توابع موج نیمه تجربی توانایی محاسبه حالات برانگیختهی الکترونی را دارند. بعضی از نواقص روشهای نیمه تجربی عبارتند از:
مولکولهایی که گشتاور فضایی زیادی داشته باشند، بسیار ناپایدارند.
حلقههای چهار عضوی بیش از حد ناپایدارند.
طول پیوند هیدروژنی حاصل از محاسبات از طریق این روشها از مقدار واقعی بلندتر و انرژی آن از مقدار واقعی کمتر است.
سد انرژی چرخشی محاسبه شده در این روشها معمولاً بیش از مقدار واقعی است.
ساختارهای غیرکلاسیک به طور معمول در این روشها ناپایدارند.
عمدهترین روشهای محاسباتی نیمهتجربی عبارتند از: AM1, PM3, 14IMDO, 15CNDO و 16NDO
1-4-2- روشهای آغازین
از بین تمامی روشهای محاسباتی، روشهای آغازین مطمئنترین و قابل اعتمادترین روشها هستند. زیرا بهترین تقریبهای ریاضی برای سامانههای واقعی بهکار گرفته میشوند. در این روشها در هامیلتونی به کار برده شده، پارامترهای تجربی وارد نمیشوند ]17-16[.
معادلهی شرودینگر در مکانیک کوانتومی نقطه شروع هر بحثی است. شکل وابسته به زمان آن برای ذره در جعبه سه بعدی به صورت زیر نوشته میشود:
{-“?” ^2/2m (?^2/(?x^2 )+?^2/(?y^2 )+?^2/(?z^2 ))+? ? }?(r,t)=i? (??(r,t))/?t

مطلب مشابه :  دانلود پایان نامه ارشد دربارهتجربه معلم

دیدگاهتان را بنویسید